Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Psychiatry ; 23(1): 22, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627578

RESUMO

BACKGROUND: One in eight children in the United Kingdom are estimated to have a mental health condition, and many do not receive support or treatment. The COVID-19 pandemic has negatively impacted mental health and disrupted the delivery of care. Prevalence of poor mental health is not evenly distributed across age groups, by sex or socioeconomic groups. Equity in access to mental health care is a policy priority but detailed socio-demographic trends are relatively under-researched. METHODS: We analysed records for all mental health prescriptions and referrals to specialist mental health outpatient care between the years of 2015 and 2021 for children aged 2 to 17 years in a single NHS Scotland health board region. We analysed trends in prescribing, referrals, and acceptance to out-patient treatment over time, and measured differences in treatment and service use rates by age, sex, and area deprivation. RESULTS: We identified 18,732 children with 178,657 mental health prescriptions and 21,874 referrals to specialist outpatient care. Prescriptions increased by 59% over the study period. Boys received double the prescriptions of girls and the rate of prescribing in the most deprived areas was double that in the least deprived. Mean age at first mental health prescription was almost 1 year younger in the most deprived areas than in the least. Referrals increased 9% overall. Initially, boys and girls both had an annual referral rate of 2.7 per 1000, but this fell 6% for boys and rose 25% for girls. Referral rate for the youngest decreased 67% but increased 21% for the oldest. The proportion of rejected referrals increased steeply since 2020 from 17 to 30%. The proportion of accepted referrals that were for girls rose to 62% and the mean age increased 1.5 years. CONCLUSIONS: The large increase in mental health prescribing and changes in referrals to specialist outpatient care aligns with emerging evidence of increasing poor mental health, particularly since the start of the COVID-19 pandemic. The static size of the population accepted for specialist treatment amid greater demand, and the changing demographics of those accepted, indicate clinical prioritisation and unmet need. Persistent inequities in mental health prescribing and referrals require urgent action.


Assuntos
COVID-19 , Atenção Secundária à Saúde , Masculino , Feminino , Criança , Humanos , Lactente , Dados de Saúde Coletados Rotineiramente , Saúde Mental , Pandemias , COVID-19/epidemiologia , Encaminhamento e Consulta
2.
Ecol Modell ; 465: 1-109635, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34675451

RESUMO

The Chesapeake Bay is the largest, most productive, and most biologically diverse estuary in the continental United States providing crucial habitat and natural resources for culturally and economically important species. Pressures from human population growth and associated development and agricultural intensification have led to excessive nutrient and sediment inputs entering the Bay, negatively affecting the health of the Bay ecosystem and the economic services it provides. The Chesapeake Bay Program (CBP) is a unique program formally created in 1983 as a multi-stakeholder partnership to guide and foster restoration of the Chesapeake Bay and its watershed. Since its inception, the CBP Partnership has been developing, updating, and applying a complex linked modeling system of watershed, airshed, and estuary models as a planning tool to inform strategic management decisions and Bay restoration efforts. This paper provides a description of the 2017 CBP Modeling System and the higher trophic level models developed by the NOAA Chesapeake Bay Office, along with specific recommendations that emerged from a 2018 workshop designed to inform future model development. Recommendations highlight the need for simulation of watershed inputs, conditions, processes, and practices at higher resolution to provide improved information to guide local nutrient and sediment management plans. More explicit and extensive modeling of connectivity between watershed landforms and estuary sub-areas, estuarine hydrodynamics, watershed and estuarine water quality, the estuarine-watershed socioecological system, and living resources will be important to broaden and improve characterization of responses to targeted nutrient and sediment load reductions. Finally, the value and importance of maintaining effective collaborations among jurisdictional managers, scientists, modelers, support staff, and stakeholder communities is emphasized. An open collaborative and transparent process has been a key element of successes to date and is vitally important as the CBP Partnership moves forward with modeling system improvements that help stakeholders evolve new knowledge, improve management strategies, and better communicate outcomes.

3.
Environ Sci Technol ; 55(4): 2585-2596, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33523627

RESUMO

Filter performance can be affected by bacterial colonization of the filtration media, yet little is known about how naturally occurring bacteria modify the surface properties of filtration media to affect colloidal removal. We used sand columns and simulated stormwater conditions to study the retention of model colloidal particles, carboxyl-modified-latex (CML) beads, in porous media colonized by naturally occurring bacterial strains. Colloid retention varied substantially across identical columns colonized by different, in some cases closely related, bacterial strains in a cell density independent manner. Atomic force microscopy was applied to quantify the interaction energy between CML beads and each bacterial strain's biofilm surface. We found interaction energy between CML and each strain was significantly different, with adhesive energies between the biofilm and CML, presumed to be associated with polymer-surface bonding, a better predictor of CML retention than other strain characteristics. Overall, the findings suggest that interactions with biopolymers in naturally occurring bacterial biofilms strongly influence colloid retention in porous media. This work highlights the need for more investigation into the role of biofilm microbial community composition on colloid removal in porous media to improve biofilter design and operation.


Assuntos
Biofilmes , Coloides , Filtração , Porosidade , Propriedades de Superfície
5.
Sci Total Environ ; 563-564: 1016-29, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185349

RESUMO

The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with that of forested land under all hydrological conditions. Overall, this work has informed understanding with respect to four major factors affecting constituent export (i.e., source input, reservoir modulation, streamflow, and land use) and demonstrated the value of long-term river monitoring.


Assuntos
Sedimentos Geológicos/química , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Hidrologia , Maryland , Pennsylvania , Estações do Ano
6.
Environ Sci Technol ; 50(4): 1877-86, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26744776

RESUMO

Reduction of suspended sediment (SS), total phosphorus (TP), and total nitrogen is an important focus for Chesapeake Bay watershed management. The Susquehanna River, the bay's largest tributary, has drawn attention because SS loads from behind Conowingo Dam (near the river's mouth) have been rising dramatically. To better understand these changes, we evaluated histories of concentration and loading (1986-2013) using data from sites above and below Conowingo Reservoir. First, observed concentration-discharge relationships show that SS and TP concentrations at the reservoir inlet have declined under most discharges in recent decades, but without corresponding declines at the outlet, implying recently diminished reservoir trapping. Second, best estimates of mass balance suggest decreasing net deposition of SS and TP in recent decades over a wide range of discharges, with cumulative mass generally dominated by the 75∼99.5th percentile of daily Conowingo discharges. Finally, stationary models that better accommodate effects of riverflow variability also support the conclusion of diminished trapping of SS and TP under a range of discharges that includes those well below the literature-reported scour threshold. Overall, these findings suggest that decreased net deposition of SS and TP has occurred at subscour levels of discharge, which has significant implications for the Chesapeake Bay ecosystem.


Assuntos
Baías/química , Sedimentos Geológicos/química , Rios/química , Qualidade da Água , Maryland , Nitrogênio/análise , Pennsylvania , Fósforo/análise
7.
Sensors (Basel) ; 14(4): 7142-55, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24759114

RESUMO

Turbidity is an internationally recognized criterion for assessing drinking water quality, because the colloidal particles in turbid water may harbor pathogens, chemically reduce oxidizing disinfectants, and hinder attempts to disinfect water with ultraviolet radiation. A turbidimeter is an electronic/optical instrument that assesses turbidity by measuring the scattering of light passing through a water sample containing such colloidal particles. Commercial turbidimeters cost hundreds or thousands of dollars, putting them beyond the reach of low-resource communities around the world. An affordable open-source turbidimeter based on a single light-to-frequency sensor was designed and constructed, and evaluated against a portable commercial turbidimeter. The final product, which builds on extensive published research, is intended to catalyze further developments in affordable water and sanitation monitoring.


Assuntos
Nefelometria e Turbidimetria/economia , Nefelometria e Turbidimetria/instrumentação , Calibragem , Desenho de Equipamento , Padrões de Referência
8.
Environ Sci Technol ; 47(24): 14034-43, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24251816

RESUMO

This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (<4 mg/L of dissolved organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.


Assuntos
Nanotubos de Carbono/química , Compostos Orgânicos/química , Dióxido de Silício/química , Água/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Oxirredução , Oxigênio/química , Porosidade , Propriedades de Superfície , Poluentes Químicos da Água/química
9.
Environ Sci Technol ; 46(23): 12839-47, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23145852

RESUMO

The sorption properties of natural organic matter (NOM) with oxidized multiwalled carbon nanotubes (O-MWCNTs) in simple electrolytes has been studied, as well as the effect that NOM concentration, pH, and O-MWCNT surface chemistry have on CNT stability under environmentally relevant conditions. As O-MWCNT oxygen content increased, NOM sorption decreased in simple electrolytes for a common set of solution conditions. For each O-MWCNT, NOM sorption increased with increasing ionic strength and decreasing pH, although the sensitivity of NOM sorption to these water quality parameters increased as the O-MWCNT oxygen content increased. Collectively, these observations indicate that NOM sorption by O-MWCNTs is determined by favorable hydrophobic π-π interactions that are moderated by repulsive electrostatic forces between negatively charged carboxylic acid functional groups on the O-MWCNTs and NOM. Stability studies conducted in artificial groundwater revealed that CNT stability is influenced by both the NOM concentration and pH, but stability was largely independent of the O-MWCNT oxygen concentration. These findings contrast with the marked effect that surface oxygen has on CNT stability in simple electrolytes. Electrophoretic mobility measurements revealed that the stabilizing effects of adsorbed NOM are due to the introduction of steric repulsion between NOM-coated CNTs, rather than from changes to surface charge.


Assuntos
Substâncias Húmicas/análise , Nanotubos de Carbono/química , Oxigênio/química , Adsorção , Eletrólitos/química , Concentração Osmolar , Oxirredução , Propriedades de Superfície
10.
Langmuir ; 26(2): 967-81, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19894751

RESUMO

Exposure of multiwalled carbon nanotubes (MWCNTs) to oxidizing acids and other oxidants introduces oxygen-containing functional groups such as hydroxyl, carboxyl, and carbonyl groups onto the surface. This research evaluated how changes in oxygen concentration and distribution of oxygen-containing functional groups influenced the sorption of aqueous zinc and cadmium on MWCNTs. Sorption results with natural char, activated carbon, and a suite of MWCNTs (of varying surface oxygen content) were obtained. Results confirmed that surface oxygen enhances the sorption of both Zn[II] and Cd[II] from aqueous solution. Although Zn[II] sorbed more strongly than Cd[II] for all materials studied, surface oxidation had more effect on the sorption of Cd[II] than of Zn[II]. Additional sorption experiments with Zn[II] and 16 MWCNTs of varying surface oxidation level and functional group distribution revealed the relative contributions of different types of surface sites to sorption. Sorption isotherms were fit using a two-site Langmuir adsorption model that incorporated the independent characterization of functional group distribution. Results showed that carboxyl-carbon sites were over 20 times more energetic for zinc sorption than unoxidized carbon (graphenic-carbon) sites, though both site types are important contributors to sorption.

11.
Environ Sci Technol ; 43(20): 7706-11, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19921882

RESUMO

A diffusion cell method was applied to measure the effective pore diffusion coefficient (Dp) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that (1) a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retarded diffusion under the given experimental conditions. Dp of 1.6-1.7 x 10(-6) cm2/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site.


Assuntos
Sedimentos Geológicos/análise , Urânio/análise , Adsorção , Difusão , Sedimentos Geológicos/química , Cinética , Modelos Químicos , Urânio/química
12.
Langmuir ; 25(17): 9767-76, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19583226

RESUMO

As with all nanomaterials, a large fraction of the atoms in carbon nanotubes (CNTs) reside at or near the surface. Consequently, surface chemistry will play a crucial role in determining the fate and transport of CNTs in aquatic environments. Frequently, oxygen-containing functional groups (surface oxides) are deliberately grafted into the CNT surface to promote colloidal stability. To study the influence that both the oxygen concentration and the oxygen functional-group distribution have on the colloidal stability of multiwalled carbon nanotubes (MWCNTs), a suite of oxidized MWCNTs (O-MWCNTs) were created using different oxidizing agents and reaction conditions. Stable colloidal suspensions were prepared by low-power sonication of O-MWCNT powders in Milli-Q water. Results from TEM, AFM, DLS, and XPS measurements revealed that, irrespective of the surface chemistry, the colloidal suspensions were composed of individual nanotubes with comparable length distributions. The critical coagulation concentrations (CCC) of O-MWCNTs that exhibited different surface chemistries were measured with time-resolved dynamic light scattering (TR-DLS) using NaCl as the electrolyte. Over a range of environmentally relevant pH values, linear correlations were found to exist between the CCC, total oxygen concentration, and surface charge of O-MWCNTs. In contrast to surface charge, electrophoretic mobility did not prove to be a useful metric of colloidal stability. Information obtained from chemical derivatization studies, carried out in conjunction with XPS, revealed that the distribution of oxygen-containing functional groups also influences the colloidal stability of O-MWCNTs, with carboxylic acid groups playing the most important role. This study highlights the fact that quantitative relationships can be developed to rationalize the influence of surface chemistry on the behavior of nanomaterials in aquatic environments.

13.
Environ Sci Technol ; 43(3): 819-25, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19245021

RESUMO

Grafting oxygen-containing functional groups onto carbon nanotubes (CNTs) by acid treatment improves their dispersion in aqueous solutions, but there is a lack of quantitative information on the colloidal properties of oxidized CNTs. We have studied the influence that pH and electrolytes have in determining the colloidal stability of oxidized multiwalled carbon nanotubes (O-MWCNTs), prepared by refluxing pristine MWCNTs in nitric acid. The acid-treated MWCNTs contained oxygen predominantly in the form of carboxyl groups. Colloidal suspensions of O-MWCNTs were prepared by low-power sonication and contained negatively charged, individual MWCNTs with an average length of approximately 650 nm. Time-resolved dynamic light scattering revealed that the aggregation rate of O-MWCNTs exhibited both reaction and mass-transport limited regimes in the presence of different electrolytes and as a function of pH. Particle stability profiles constructed from aggregation rate data allowed for the determination of critical coagulation concentrations (CCC), a metric of colloidal stability. The CCC values of O-MWCNTs varied with counterion concentration and valence in a manner consistentwith DLVO theory. Potentiometric measurements of surface charge correlated well with the observed pH-dependent variations in the O-MWCNT's colloidal stability. Electrophoretic mobility was also a diagnostic of particle stability, but only in neutral and acidic conditions.


Assuntos
Ácidos/química , Coloides , Nanotubos de Carbono , Luz , Espalhamento de Radiação , Propriedades de Superfície , Água
14.
Environ Sci Technol ; 42(8): 2899-905, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497141

RESUMO

As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.


Assuntos
Nanotubos de Carbono/química , Naftalenos/química , Óxidos/química , Poluentes Químicos da Água/química , Adsorção , Carbono/química
16.
J Environ Qual ; 36(5): 1392-402, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17766818

RESUMO

Low permeability regions in which solute movement is governed by diffusion reduce the availability of pollutants for remediation and can function as long-term sources of groundwater contamination. The inherent difficulty in understanding mass transfer from these regions of sequestered contamination is further complicated by unknown solute distributions within the low-permeability regions (sequestering regions). When models are calibrated to reproduce temporal histories of solute release from a sequestering region (desorption), the fitted parameter values are used to infer the physical or chemical characteristics of the media; however, the calibrated parameters also reflect the case-specific initial conditions (i.e., the solute distribution within the sequestering region domain at the onset of desorption). This phenomenon is demonstrated using model simulations of solute diffusion from hypothetical solids with characteristics similar to those of the well studied Borden, Ontario aquifer system. Solute release from the solids is simulated using a batch diffusion model under different initial solute distributions within the solids. The results of these model simulations are used to calibrate parameters of a multiple first-order rate desorption model (MRM) to illustrate how the fitted MRM parameters increase or decrease depending on the initial "aging" of the solids. Further numerical simulations are conducted for a one-dimensional flow system under steady-state and variable-rate hydraulic flushing. These simulations show that although aging reduces desorptive mass flux during early stages of flushing, aged sites have greater desorptive mass flux (greater solute availability) than "freshly" contaminated media during the later stages of remediation. Overall, the results demonstrate why the physicochemical meaning of observed desorption rates cannot be accurately deduced without first understanding the initial solute distribution within the media.


Assuntos
Recuperação e Remediação Ambiental , Modelos Teóricos , Poluentes do Solo/metabolismo , Adsorção , Difusão , Solo , Poluentes do Solo/química , Fatores de Tempo
17.
Environ Sci Technol ; 41(4): 1212-7, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17593721

RESUMO

Sorption isotherms for five aromatic hydrocarbons were obtained with a natural wood char (NC1) and its residue after solvent extraction (ENC1). Substantial isotherm nonlinearity was observed in all cases. ENC1 showed higher BET surface area, higher nitrogen-accessible micropore volume, and lower mass of extractable organic chemicals, including quantifiable polycyclic aromatic hydrocarbons (PAHs),while the two chars showed identical surface oxygen/ carbon (O/C) ratio. For two chlorinated benzenes that normally condense as liquids at the temperatures used, sorption isotherms with NC1 and ENC1 were found to be statistically identical. For the solid-phase compounds (1,4-dichlorobenzene (1,4-DCB) and two PAHs), sorption was statistically higher with ENC1, thus demonstrating sorption effects due to both (1) authigenic organic content in the sorbentand (2)the sorbate's condensed state. Polanyi-based isotherm modeling, pore size measurements, and comparisons with activated carbon showthe relative importance of adsorptive pore filling and help explain results. With both chars, maximum sorption increased in the order of decreasing molecular diameter: phenanthrene < naphthalene < 1,2-dichlorobenzene/1,2,4-trichlorobenzene < 1,4-DCB. Comparison of 1,4- and 1,2-DCB shows that the critical molecular diameter was apparently more important than the condensed state, suggesting that 1,4-DCB sorbed in the liquid state for ENC1.


Assuntos
Hidrocarbonetos Aromáticos/química , Madeira , Adsorção , Cloreto de Metileno/química , Pinus , Porosidade , Solventes/química , Propriedades de Superfície
18.
Environ Sci Technol ; 40(9): 2958-64, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16719097

RESUMO

Soot particles vary in pore structure, surface properties, and content of authigenic (native) extractable organic chemicals. To better understand the effects of these properties on sorption, aqueous sorption isotherms for 14C-labeled phenanthrene and 1,2,4-trichlorobenzene were obtained for four soots of varying properties: two diesel reference soots, a hexane soot, and an ozonated hexane soot. Substantial isotherm nonlinearity was observed. In comparison to diesel soot SRM 2975, diesel soot SRM 1650b had a much higher content of extractable authigenic organic chemicals, showed less sorption of 14C-labeled sorbate at low relative concentrations (Ce/Sw), and showed higher sorption at high Ce/Sw. In comparison to normal hexane soot, the ozonated hexane soot had a higher surface O/C ratio and showed substantially less sorption at all concentrations studied. The sorption differences were attributed to the noted differences in properties, and results were interpreted through a dual-mode sorption model that included the possibility of both surface adsorption (modeled using a Polanyi-based approach) and simple phase partitioning (linear absorption). Generally, such modeling indicated that overall uptake at low concentrations in all four soots was dominated by surface adsorption but that sorption at higher sorbate concentrations in SRM 1650b was heavily influenced by linear absorption within the natively bound organic phase.


Assuntos
Gasolina , Hexanos/química , Absorção , Adsorção , Química Orgânica/métodos , Clorobenzenos/química , Poluentes Ambientais , Modelos Químicos , Nitrogênio , Fenantrenos/química , Hidrocarbonetos Policíclicos Aromáticos , Propriedades de Superfície , Poluentes Químicos da Água
20.
J Contam Hydrol ; 82(3-4): 255-92, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16310889

RESUMO

Bioavailability often controls the fate of organic contaminants in surface and subsurface aquatic environments. Bioavailability can be limited by sorption, mass transfer, and intrinsic biodegradation potential and can be further altered by the presence of other compounds. This paper reviews current perspectives on the processes influencing subsurface contaminant bioavailability, how these processes are modeled, and how the relative role of the various processes can be assessed through bioavailability indices. Although these processes are increasingly well understood, the use of sophisticated models and indices often are precluded by an inability to estimate the many parameters that are associated with complex models. Nonetheless, the proper representation of sorption, mass transfer, biodegradation, and co-solute effects can be critical in predicting bio-attenuation. The influence of these processes on contaminant fate is illustrated with numerical simulations for the simultaneous degradation of toluene (growth substrate) and trichloroethylene (nongrowth cometabolite) in hypothetical, aerobic, solid-water systems. The results show how the relative impacts on contaminant fate of the model's various component processes depends upon system conditions, including co-solute concentrations. Slow biodegradation rates increase the inhibition effects of a cometabolite and suppress the rate enhancement effects of a growth substrate. Irrespective of co-solute effects, contaminant fate is less sensitive to biodegradation processes in systems with strong sorption and slow desorption rates. Bioavailability indices can be used to relate these findings and to help identify appropriate modeling simplifications. In general, however, there remains a need to redefine such indices in order that bioavailability concepts can be better incorporated into site characterization, remediation design, and regulatory oversight.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Compostos Orgânicos/metabolismo , Movimentos da Água , Absorção , Aerobiose , Disponibilidade Biológica , Floculação , Modelos Biológicos , Compostos Orgânicos/análise , Tamanho da Partícula , Fatores de Tempo , Tolueno/análise , Tolueno/metabolismo , Tricloroetileno/análise , Tricloroetileno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...